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Abstract. The distribution of masses of clusters smaller than the infinite cluster is evaluated at
the percolation threshold. The clusters are ranked according to their masses and the distribution
P(M/LD, r) of the scaled massesM for any rankr shows a universal behaviour for different lattice
sizesL (D is the fractal dimension). For different ranks however, there is a universal distribution
function only in the large-rank limit, i.e.P(M/LD, r)r−yζ ∼ g(Mry/LD) (y andζ are defined in
the text), where the universal scaling functiong is found to be Gaussian in nature.

Percolation is a classic example of systems with quenched disorder [1]. In a discrete lattice,
sites or bonds are present with a certain probability and clusters are formed by connecting
neighbouring occupied sites. At a critical probability, an ‘infinite’ cluster appears for the first
time which spans the whole lattice.

The average mass or size of the spanning cluster is known to scale asM ∼ LD, whereL
is the lattice size andD the fractal dimension. In two recent papers [2, 3] it was shown that,
when the clusters are ranked, the average masses of the ranked clusters also show a similar
scaling behaviour. This is true even for the clusters of large rank, which are definitely smaller
than the spanning cluster. These clusters have been termed ‘effectively spanning’ since their
masses diverge with the lattice size although they do not really span the lattice. The behaviour
of the average scaled massM/LD as a function of the rankr was found to be

〈M/LD〉 ∼ r−λ (1)

whereλ can be expressed in terms of other known exponents of percolation as [3]

λ = 1/(τ − 1). (2)

Hereτ = 1+d/D whered is the spatial dimension. It was also argued that the above behaviour
is only observed in the asymptotic limitr →∞. The〈M/LD〉 versusr curve actually changes
its slope slowly (in a log–log plot). Hence, for a given range ofr, one can define an effective
λeff(r) with λeff(r → ∞) given by (2). Very large rank would essentially mean clusters of
size one or two in a finite lattice and these are not of present interest.

The distribution function and its moments are useful for studying important properties of
a system such as multifractality, lacunarity etc. The distribution of the size ofall the clusters,
which is essentially the number of clusters of a given size (as a function of the size) in a dilute
lattice, is well known [1] both at and away from criticality. Distributions of several other
quantities such as the size of the spanning clusters, chemical distances, shortest and longest
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Figure 1. Variation of the average scaled mass〈M/LD〉 against the ranks are shown for lattice
sizesL = 200, 300, 500 and 1000. A larger number of data (corresponding to higher ranks) are
available for increasing lattice size.

paths on the percolation cluster etc, have also been studied in detail [4–9]. In general, at
criticality, when the randomness is relevant, a universal non-Gaussian distribution function
will exist [10]. Although questions about distribution functions have been addressed for quite
some time, a proper understanding is still lacking in several areas [4, 7–9, 11]. Recently, the
behaviour of the distribution of the largest cluster below criticality was also studied [12].

The existence of universal scaling functions for the different quantities in the percolating
lattice and the properties of the ranked clusters inspired us to study the distribution of the mass
or size of these clusters at the percolation threshold. Although most of the quantities which
have been studied earlier are directly related to the percolating or spanning cluster (such as the
mass of the percolating cluster, the mass of the backbone, the shortest path on the backbone, etc)
the smaller clusters are no less important. In addition, the remarkable fractal-like behaviour
of the ranked clusters calls for further investigation. Our interest is particularly focused on the
question of universality of the distribution function.

In the simulation, the clusters in a square lattice (with helical boundary condition) are
identified using the Hoshen–Kopelman algorithm. We rank the clusters at the percolation
threshold irrespective of whether the lattice is actually percolating or not. It may be noted that
the ranked clusters may have degeneracy in the sense that there may be several clusters with
the same rank in a particular realization of the lattice. We checked, however, that incorporating
this degeneracy hardly affects the results.

We first check the fact that the slope of the average cluster mass〈M/LD〉 versusr in a
log–log plot is indeed not unique in spite of (1) and in agreement with [3]. We also verify that
λeff(r) has very weak finite-size dependence, if any, as shown in figure 1. Forr > 30, there
is apparently some size dependence, but for the small lattices (e.g.L = 200, 300 etc), such
ranks correspond to clusters which are not effectively spanning. Indeed, in [3], the asymptotic
value ofλ was found from very large lattices. However, one can obtain useful information as
long as distribution functions are concerned, even from relatively smaller lattices.

The number of clusters of rankr with massM/LD is evaluated. The normalized probability
distribution (P(M/LD, r)) of a cluster of scaled massM/LD and rankr is obtained by dividing
this number by the total number of clusters of rankr. This is shown for the ranks 4, 6, 10 and
14 for several lattice sizes in figure 2. As in [7], where only distributions for the caser = 1
were considered, the bin sizes are proportional to 1/LD, and one directly obtains a universal
distribution forP(M/LD, r) for several values ofL. Another interesting feature is that, as one
plotsP(x = M/LD, r) for several ranks, it is found that the peaks of the distribution functions
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Figure 2. The probability distribution for the ranked cluster masses are shown for ranksr = 4, 6, 10
and 14 (from right to left) for lattice sizesL = 200, 300, 400 and 500 against the scaled masses.
The peaks of the distribution functions show a power law behaviour withM/LD where the maxima
occur for each rank.

Figure 3. The partial collapse of the data for the scaled distributionP̃ (Mry/LD) =
P(M/LD, r)r−yζ is shown for ranksr = 4, 6, 10 and 14. The value ofy is 1.75.

behave asPmax(xmax) = x−ζmax wherexmax is the value ofx at which the peak occurs. (This is
shown by the straight line touching the peaks of the distribution in figure 2 in a log–log plot.)
This behaviour of the peaks persists with a rank-independent value ofζ ' 1.25 even for the
higher ranks.

We are more interested, however, in the behaviour of the probability distribution functions
for different ranks for the same lattice size. The peak of the distributionP(M/LD, r) has a
functional dependence onr asrζλeff (r) from the above-mentioned behaviour and equation (1).
However, in general the behaviour of the entire distribution may not be asrζλeff (r) and we
observe that it is better to expect a general form as

P(M/LD, r)r−yζ ∼ g(Mry/LD) (3)

when plotted against the natural scaling argumentMry/LD. Herey is expected to be close
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Figure 4. The partial collapses of the data for the scaled distributionP̃ (Mry/LD) =
P(M/LD)r−yζ for ranksr = 24, 28, 32 and 40 with two different values ofy are shown separately.

Figure 5. The collapse of the data for the scaled distributionP̃ (Mry/LD) = P(M/LD, r)r−yζ is
shown for the ranksr = 70, 80, 90 and 100. The value ofy is 1.1.

to λeff(r). The values ofy are compared with different values ofλeff(r) (corresponding to
three different ranges ofr) where the latter are obtained from piecewise least-square fitting of
〈M/LD〉 versusr curves.g is a universal scaling function. We attempt to check whether one
can actually obtain such a universal function for the distributions.

While the data for the smaller ranges ofr are taken from a system ofL = 500, those in
figure 5 correspond to that withL = 1000. The number of random configurations generated
are 104 and 103, respectively, for the two sizes. The results for the different ranges ofr (as
appropriate to the system sizes considered) are summarized below.

Small r. For 4< r < 14, we find that only one part of the curves (that beyond the peak value
of P(x, r)) are collapsing when plotted against the proposed scaling argument withy ' 1.75.
Here the actual value ofλeff(r) is around 1.45.
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Intermediate r. For r values in a higher range (24< r < 40), we find that the two parts of
the curves collapse separately with different values ofy; y ' 1.4 for the portion beyond the
peak, andy ' 0.95 for the other portion. The value ofλeff for this range ofr is found to be
close to 1.25.

Higher r. Plotting the scaled probabilities for even higher values ofr we find, for the first
time, a simultaneous collapse of both sides of the curves withy between 1 and 1.1. The value
of λeff in this range is also'1.1. Hence a universal function is indeed obtained for larger

values. We believe that, for even higher ranges ofr (for which reliable data can be obtained
from larger lattices), the same behaviour will persist, with the value ofy approaching the
asymptotic value ofλ. Interestingly, for the smaller and higher ranges ofr, y is neither equal
to λeff or the asymptotic value ofλ (at least for largex). However, in the scaling regime (i.e.
for the large ranks),y ' λeff .

The major portion of the universal distribution seems to fit well with a Gaussian distribution
function of the form exp(−(x−x0)

2/σ)with 0< x <∞,σ ' 0.0005,A ' 0.17 andx0 ' 0.1.
Hence we obtain a distribution function in the following form:

P(M/LD, r) ∼ ryζ exp(−(Mry/LD − 0.1)2)/σ ) (4)

with y ' 1.1 andζ ' 1.25 for the higher ranks.
Hence we obtain two most significant results in the present study:

(a) The exponentζ ' 1.25 for all ranges of the ranks. This is significant as, while other
properties of the system are rank dependent, this particular one remains constant.

(b) The existence of a Gaussian distribution. Most of the distribution functions studied earlier
have yielded a more complicated universal function [4,5,7]. However, here also the data
corresponding to very small values ofMry/LD do not fall on the Gaussian fitting curve.

It is difficult to relateζ to the known exponents in percolation. Naively, if (1) is to be
derived from (4), then

〈M/LD〉 =
∫

M

LD
P(M/LD, r)d

(
M

LD

)
∼ r−λ (5)

givesζ = 1.0 with y = λ. This involves the approximation that the mass of the cluster varies
from zero to infinity. This approximation and also possible deviations from the Gaussian
distribution may be responsible for the discrepancy between this value and the obtained value
of ζ ; or it may simply be due to errors in numerical estimate.

As already mentioned, the distribution for the probability (per site) of clusters withs sites
is known to beQ(s) ∼ s−τ in a percolating lattice. One may expect that this behaviour can
be extracted fromP(M/LD, r) by calculating6rP (M/LD, r) ass = (M/LD)LD−d , and a
theoretical estimate ofζ can be made. However, it has been numerically verified that one
needs to include clusters of all ranks to obtainQ(s) in the above manner, and the absence of
a universal scaling law for allr thus does not allow one to theoretically estimateζ .

In conclusion, the fact that the average cluster size only approached a rank-independent
scaling form given by (4) for larger is consistent with our result that the universal form is
obtained, again, only in the large-r limit. One needs an exponenty to obtain a collapse of
the data which should apparently equalλ. However,y is greater thanλeff for the lower rank
ranges. Surprisingly though, for the intermediate rank range, a data collapse is achieved for
the smaller masses with a value ofy very close to the asymptotic value ofλ. It is not clear
how significant this equivalence is and whether it is purely accidental. In addition, we get an
exponentζ from the scaling behaviour of the probability distribution which is independent
of the rank. An approximate estimate ofζ is attempted for comparison with the numerically
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obtained value. As in the cases of other quantities in percolation, here a universal function is
also seen to exist, which in contrast to the others is a simple Gaussian. The universal functions
existing for each rank separately for several system sizes, however, have a more complicated
nature.

Acknowledgments

The author is grateful to the computing centre of the Institute of Physics, Bhubaneswar, where
the programs were run on a HPK9000/879 machine. She also thanks D Stauffer for a critical
reading of the manuscript and very useful comments.

References

[1] Stauffer D and Aharony A 1994Introduction to Percolation Theory(London: Taylor and Francis)
[2] Watanabe M S 1996Phys. Rev.E 534187
[3] Jan N, Stauffer D and AharonyA 1998J. Stat. Phys.92325
[4] Havlin S, Trus B L, Weiss G H and Ben-Avraham D 1985J. Phys. A: Math. Gen.18L247

Neumann A U and Havlin S 1988J. Stat. Phys.52203
Saleur H and Derrida B 1985J. Physique461043

[5] Hovi J-P and Aharony A 1997Phys. Rev.56172
[6] Sen P and Ray P 1990J. Stat. Phys.591573
[7] Sen P 1999Int. J. Mod. Phys.C 10747
[8] Porto M, Havlin S, Roman H E and Bunde A 1998Phys. Rev.E 58R5205
[9] Grassberger P 1999Preprintcond-mat/9906309

[10] Aharony A and Harris A B 1996Phys. Rev. Lett.773700
[11] Ziff R 1999J. Phys. A: Math. Gen.32L457–9

(Ziff R 1999Preprintcond-mat/9907305)
[12] Bazant M Z 1999Preprintcond-mat/9905191


